
©Gilles Petit – f4hla 2004 http://f4hla.free.fr 1/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

COOLPIX REMOTE CONTROL PROTOCOLS

Why and who 2
Coolpix MC-EU1 Protocol 3

Introduction 3
Commands 3
Going to MC-EU1 protocol 3
Has camera power down ? 3
Take a shot 3
Zoom IN 3
Zoom OUT 3
Next picture 3
Previous picture 3
Number of picture left 3
A-REC/M-Rec 4
Go back to standard protocol 4
Notes 4

Standard protocol 5
Introduction 5
Protocol elements 5
Packet structure 5
Flow of Control 5
Command format and codes (data field) 6
Registers 6
Example 10

©Gilles Petit – f4hla 2004 http://f4hla.free.fr 2/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

Why and who

Having a look at this document, some of you would say “Oh no, another dummy that stole and use
others’ works!”. Not at all, indeed! The reason why I have written this document is that I have tried to
write my own Coolpix remote control software on Palm platform since the old one won’t work anymore
on new devices. Thus my research on the net leads me to found two web site dealing with remote
control protocol : the one of Vladimir Vyskocil for the MC-EU1 one and the one of Eugene Crosser for
the general camera protocol. They must be really greaten here.

Then it is well known that information on the WWW can disappear as quick as it appear : that is
why I have written and shared this document. It is mainly based on a cut and paste from the previously
quoted web sites but I have corrected some little mistakes and added some information that I found by
analysing the Coolpix 995 serial protocol. Finally, I have also had things that I found useful for writing
my software.

This document is free and for personal use. It cannot be sell or used to design a commercial

software without my permission. The last version can be found at http://f4hla.free.fr .
On this last web site you will find CoolPalm© that is a software design with the use of this

document for remotely controlled Coolpix camera from a Palm computing platform that has been
successfully tested with a Nikon Coolpix 995 and a Palm Tungsten. This program is free but offers no
guaranty and the author cannot be responsible for damages caused to the Palm or to the camera.

I hope you will enjoy the use both of this document and program as much as I enjoy doing them.

Regards
 Gilles, f4hla

©Gilles Petit – f4hla 2004 http://f4hla.free.fr 3/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

Coolpix MC-EU1 Protocol

Introduction

Here are some informations about the serial protocol used between the Coolpix and the MC-EU1
remote.

Speed is set to 19200 bauds.
This protocol use 1 or 4 bytes "packets". 4 bytes packets are used to send command to the Coolpix

and receive information from it.
1 byte packet are used as acknowledge (0x86), not acknowledge (0x15), "attention packet" (0xFF).
Each byte in these packet is divided in two part, bit 0-6 is the value on 7 bits and bit 7 is the odd

parity bit (thanks Mark Roberts !)
Returned value by the coolpix (in the two or three? last byte) have 0x1C offset, and least significant

byte is sent first, for example the number of picture is :

nb picture = ((byte[2] & 0x7F) - 0x1C) + 100 * ((byte[3] & 0x7F) - 0x1C)
byte[0] == 0x9B, byte[1] == 0x10

Commands

Send Receive Info
Going to MC-EU1 protocol
0x00 0x15
0x1B,0x53,0x06,0x00,0x00,0x11
0x02,0x00,0x00,0x00,0x13,0x00

0x06 Standard SetSpeed to 19200
command packet

0x1B,0x53,0x06,0x00,0x00,0x11
0x02,0x00,0x00,0x10,0x23,0x00

0x06 Go to MC-EU1 protocol packet,
switch LCD ON

0x9B, 0x85, 0x1C, 0x1C 0x9B, 0x13, 0x1C, 0x1C Magic init string
0x86
Has camera power down ?
0x9B, 0x08, 0x1C, 0x1C 0x9B, 0x92, 0x7F, 0x7F Coolpix is ON
 0x9B, 0x19, 0x7F, 0x7F Coolpix powerdown
0x86
Take a shot
0x9B, 0x01, 0x1C, 0x1C 0x86 Half press the shutter button
0x9B, 0x01, 0x7F, 0x1C 0x86 Full press the shutter button,

take the picture
0x9B, 0x01, 0x7F, 0x7F 0x8F Release the shutter button,

usefull in bulb mode
0x9B, 0x01, 0x1C, 0x7F 0x86 Half press release (unlock

shutter button)
Zoom IN
0x9B, 0x02, 0x1C, 0x1C 0x86 "Press" the zoom in button
0x9B, 0x02, 0x1C, 0x7F 0x86 "Release" the zoom in button
Zoom OUT
0x9B, 0x02, 0x7F, 0x1C 0x86 "Press" the zoom out button
0x9B, 0x02, 0x7F, 0x7F 0x86 "Release" the zoom out button
Next picture
0x9B, 0x04, 0x1C, 0x1C 0x86 "Press" right
0x9B, 0x04, 0x1C, 0x7F 0x86 "Release" right
Previous picture
0x9B, 0x04, 0x7F, 0x1C 0x86 "Press" left
0x9B, 0x04, 0x7F, 0x7F 0x86 "Release" left
Number of picture left
0x9B, 0x07, 0x1C, 0x1C 0x9B, 0x10, 0xXX, 0xYY (0xXX & 0x7F) - 0x1C + 100 *

((0xYY & 0x7F) - 0x1C) is the
number of pictures left

0x86

©Gilles Petit – f4hla 2004 http://f4hla.free.fr 4/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

A-REC/M-Rec
0x9B, 0x89, 0x1C, 0x1C 0x9B, 0x91, 0x9D, 0x1C A Rec mode
 0x9B, 0x91, 0x0D, 0x7F M Rec mode
 0x9B, 0x91, 0x7F, 0x9D Play mode
0x86
Go back to standard protocol
0x9B, 0x8A, 0x1C, 0x1C 0x86 LCD OFF

Notes

- At first connection after Coolpix has been powerup, first 0x00 don't work, Coolpix respond
0xFF 0xFF then nothing. A second 0x00 do the job.

- "Attention" packet 0xFF from Coolpix
Coolpix send 0xFF in many cases :

• After initialisation in response to 0x00.
• When Coolpix self powerdown (powersave)
• When Coolpix is powerdown
• When a picture has been recorded
• When mode selector is operated (A-Rec, M-Rec, Play)

- It's a good idea to send 0x9B, 0x08, 0x1C, 0x1C packet to check if Coolpix has powerdown
when a 0xFF is received, else check the picture number and current mode.

- Camera send NAK (0x15) in response to bad command packet.
- All the four step, in previous order must be followed in order to take one shot.

©Gilles Petit – f4hla 2004 http://f4hla.free.fr 5/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

Standard protocol

Introduction

Several models of digital cameras, namely Epson, Sanyo, Agfa and Olympus cameras, seem to

use the same protocol for communication with the host. Follows the description of the high-level
protocol they use over the serial line.

The host and the camera exchange with data packets and individual bytes. Serial line paramaters
used are: 8bit, no parity. No flow control is used. All arithmetic data is transmitted least significant byte
first ("little endian").

Protocol elements

The elementary units of the protocol are:

Initialisation Byte NUL 0x00
Action Complete Notification ENQ 0x05
Positive Acknowledgement ACK 0x06
Unable to Execute Command DC1 0x11
Negative Acknowledgement,
also Camera Signature

NAK 0x15

Packet Variable length sequence of bytes
Termination Byte 0xff

Packet structure

The packet has the following structure:

Offset Length Meaning
0 1 Packet type
1 1 Packet subtype/sequence
2 2 Length of data
4 variable Data
variable 2 Checksum

Known packet types are:

Type Description
0x02 Data packet that is not last in sequence
0x03 Data packet that is last in sequence
0x1b Command packet
0x9b Nikon MC-EU1 protocol

Data packets that are sent in response to a single command are numbered starting from zero. If all

requested data fits in one packet, it has type 0x03 and sequence 0.
Command packet has subtype 0x43 or 0x53. Only the first command packet in a session has

subtype 0x53.
Maximum length of data field in a packet is 2048 bytes, which yields in 2054 total packet length.
Checksum is a simple 16 bit arithmetic sum of all bytes in the data field. As already mentioned

above, length and checksum values are transmitted least significant byte first.

Flow of Control

A communication session flow is as follows:

Host Camera
Port speed set to 19200 baud

Host sends init byte 0x00 Camera responds with signature 0x15
Host sends command packet with subtype 0x53
and "set speed" command

Camera sends ACK 0x06

©Gilles Petit – f4hla 2004 http://f4hla.free.fr 6/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

Port speed set to the new value
Host sends command Camera responds with either ACK plus optionally

"action taken" notifier or data packet sequence
 Host sends ACK to every data packet

... Command - reply cycle repeated ...
 Camera sends 0xff and resets after a few seconds

(value is model-dependant) of inactivity

If the camera does not respond to a command in reasonable time, or responds with a NAK, the

command can be resent. If the camera does not provide a complete data packet in reasonable time, or
the data packet is corrupt (checksum does not match), the host can request resending of the packet
by sending NAK instead of ACK.

Command format and codes (data field)

Command is a sequence of bytes sent in the data field of a command packet. Command format is

as follows:
Offset Length Description

0 1 Command code
1 1 Register number or subcode
2 variable Optional argument

Five command codes are known:

Code Argument Description
0 int32 Set value of integer register
1 none Read value of integer register
2 vdata Take action unrelated to registers
3 vdata Set value of vdata register
4 none Read value of vdata register

Commands 0 and 3 are replied with a single ACK 0x06.
Command 2 is replied with an ACK 0x06 followed by an "action complete" notifier 0x05.
Commands 1 and 4 are replied with a sequence of data packets, each of them must be ACK'ed by

the host.
Command 0 must be issued with a 4 byte argument containg the new value for the register (bytes

in "LSB first" order).
Command 2 typically is issued with a single zero byte as an argument.
Command 3 is issued with an argument of variable number of bytes. If this is a printable string, it

should not include the trailing zero byte.
Camera replies to the command 1 with a single data packet containing 4 bytes of a 32bit integer (in

"LSB first" order).
Camera replies to the command 4 with a sequence of data packets with variable number of data

bytes. Note that if a printable string is returned, it is terminated with a zero byte, and thus may be
safely printed or otherwise treated as a normal C language character string.

Registers

The following registers are known (read/writablity info may be inaccurate):

No. Type R/W Description
1 int32 R/W Resolution (see next table)
2 int32 R/W Clock in UNIX time_t format
3 int32 R/W Shutter speed (microseconds), 0 - Auto
4 int32 W Current frame number (or animation number if hi order byte is 0xff)
5 int32 R/W Aperture: 0 - Auto, 1 - Low, 2 - Med, 3 - 10 Hi (model dependent)
6 int32 R/W Color mode: 1 - Color, 2 - B/W
7 int32 R/W Flash mode: 0 - Auto, 1 - Force, 2 - Off, 3 - Anti Redeye, 4 - Slow sync
8 int32 R/W Unknown (128)

©Gilles Petit – f4hla 2004 http://f4hla.free.fr 7/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

9 int32 R/W Unknown (128)
10 int32 R No. of frames in current folder
11 int32 R No. of frames left
12 int32 R Length of current frame *
13 int32 R Length of current thumbnail *
14 vdata R Current frame data *
15 vdata R Current thumbnail data *
16 int32 R Battery capacity percentage
17 int32 R/W Communication speed 1 - 9600 .. 5 - 115200, 6 - 230400, 256 - 9600 .. 264 -

911600 (sync?)
18 int32 R Unknown (1)
19 int32 R/W Bright/Contrast: 0 - Standard, 1 - Contrast+, 2 - Contrast-, 3 - Brighten+, 4 –

Brighten
20 int32 R/W White balance: 0 - Auto, 1 - Sunny, 2 - Incandescent, 3 - Fluorescent, 5 -

Flash, 6 - White preset, 255 - Cloudy
21 vdata R Unused
22 vdata R/W Camera I.D.
23 int32 R/W Autoshut on host timer (seconds)
24 int32 R/W Autoshut in field timer (seconds)
25 vdata R/W Serial No. (string)
26 vdata R Version
27 vdata R/W Model
28 int32 R Available memory left
29 vdata R/W Upload image data to this register
30 int32 W LED: 0 - Off, 1 - On, 2 - Blink
31 vdata R/W Unknown ("\0")
32 int32 R/W Put "magic spell" 0x0FEC000E here before uploading image data
33 int32 R/W Focus mode: 1 - Macro, 2 - Normal, 3 - Infinity/Fisheye
34 int32 R Operation mode: 1 - Off, 2 - Record, 3-Play, 6-Thumbnail
35 int32 R/W LCD brightness 1 to 7
36 int32 R/W Unknown 1-65535 (3)
37 vdata R Unknown ("\0")
38 int32 R LCD autoshut timer (seconds)
39 int32 R Protection state of current frame *
40 int32 R True No. of frames taken
41 int32 R/W LCD date format: 1 - 'YY MM DD, 2 - DD MM 'HH
42 vdata R Unknown ("")
43 vdata R Audio data description block *

0: expanded .wav length
1: compressed .wav length
3: Unknown (0)
4: Unknown (0)
5: Unknown (0)
6: Unknown (0)
7: Unknown (0)

44 vdata R Audio data *
45 vdata R Unknown ("")
46 vdata R Camera summary data: 32 bytes with copies of 8 other registers

0: Reg 1 (Resolution)
1: Reg 35 (LCD brightness) or Reg 7 (Flash mode)
2: Reg 10 (Frames taken) or Unknown
3: Unknown (0)
4: Unknown (0) or Reg 16 (Battery capacity)
5: Unknown (0) or Reg 10 (Frames taken)
6: Unknown (0) or Reg 11 (Frames left)
7: Number of animations taken

47 vdata R Picture summary data: 32 bytes or 8 int32's *
0: Hi order byte: unknown, next 3 bytes: Length of current image
1: Length of current thumbnail

©Gilles Petit – f4hla 2004 http://f4hla.free.fr 8/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

2: Audio data length (expanded)
3: Resolution
4: Protection state
5: TimeDate
6: Unknown (0)
7: Animation type: 1 - 10ms, 2 - 20ms

48 vdata R Manufacturer
49 vdata R Unknown ("")
50 int32 R/W Unknown (0)
51 int32 R/W Card detected: 1 - No, 2 - Yes
52 vdata R Unknown ("")
53 int32 R/W Language: 3 - english, 4 - french, 5 - german, 6 - italian, 8 - spanish, 10 -

dutch
54 int32 R/W Unknown (30)
55-58 vdata R Unknown ("")
59 int32 R Unknown (1)
60 int32 R True No. of frames taken
61-64 vdata R Unknown ("")
65 int32 R Unknown (1)
66-67 vdata R Unknown ("")
68 int32 R Unknown (0)
69 vdata R/W Exposure Compensation 8 bytes

0: compensation value -20 to +20 (tenths)
1: 0
2: 0
3: 0
4: 10
5: 0
6: 0
7: 0

70 int32 R/W Exp. meter: 2 - Center-weighted, 3 - Spot, 5 - Multi element matrix
 71 vdata R/W Effective zoom in tenths of millimeters: 8 bytes

0: LSB
1: MSB
2: 0
3: 0
4: 10
5: 0
6: 0
7: 0

72 int32 R/W Bitmap: 1 - AEL/WBL, 2 - Fisheye, 4 - Wide, 8 - Manual zoom, 16 - B/W, 256
- 1.25x, 512 - 1.6x, 768 - 2.0x, 1024 - 2.5x, 1280 - off

73-76 vdata R Unknown ("")
77 int32 W Size of data packet from camera (default 0x800)
78 vdata R Unknown ("")
79 vdata R Filename of current frame *
80-81 vdata R Unknown ("")
82 int32 W Unknown (enable folder features? Write 60 here)
83 int32 R/W Folder navigation

When read, return number of folders on the card.
When written without data, reset folder system (?)
Or select current folder by its number

84 vdata R/W Current folder name (may read or set)
85-90 vdata R Unknown ("")
91 vdata R Current folder I.D. and name

* Note: Marked registers only become useful for reading after setting register 4. If value of 0

assigned to register 4 after doing action 5, subsequent retrieval of picture data gives the "live preview".

©Gilles Petit – f4hla 2004 http://f4hla.free.fr 9/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

Resolutions codes must be checked for every kinds of camera but for the Cooplix 995 they are :
Quality\Size Fine Normal Basic

Hi 0x13 0x12 0x11
UXVGA 0x0c 0x0b 0x0a
SXVGA 0x06 0x05 0x04
XVGA 0x09 0x08 0x07
VGA 0x03 0x02 0x01
3:2 0x010 0x0f 0x0e

For command 2, the second byte is action code not register number. The following action codes

are known:
Code Argument Description
0 single zero byte Erase last picture
1 single zero byte Erase all pictures (but not animations)
2 single zero byte Take picture
3 single byte
4 single zero byte Finish session immediately
5 single zero byte Take preview snapshot (retrievable as frame zero)
6 single byte Calibration / testing. Arg value:

1 Calibrate autofocus
3 Calibrate white balance
4-6 Store 0 in Reg 32
9 Load LCD Brightness (0-31) from Reg 32
10 Load LCD size (25 for Nikon Coolpix 950) from Reg 32
11 LCD Saturation (0-32) from Reg 32
13 LCD Red-Green (0-32) from Reg 32
14 LCD Blue (0-32) from Reg 32
15 Store -1 in Reg 32
16 Calibrate color
17 Take picture and reset LCD
18 Store -1 in Reg 32
20-23 locks up if lcd is on
24-255 Store -1 in Reg 32

7 single zero byte Erase current frame *
8 single byte Switch LCD mode. Arg value:

1 - Off
2 - Record
3 - Play
4 - preview thumbnails (?)
5 - Thumbnail (?)
6 - Thumbnail (?)
7 - Next
8 - Previous

9 single byte Set protection state of current frame to the value of parameter (binary 0
or 1)*

11 single zero byte Store freshly uploaded image into NVRAM
12 single byte LCD test. Arg value:

0 - white
1 - gray
2 - black
3 - red
4 - green
5 - blue
6 - test pattern

16 zero single byte ?Store 1 in Reg 83

* Note: actions 7 and 9 only useful after setting register 0x04.

©Gilles Petit – f4hla 2004 http://f4hla.free.fr 10/10
`From documents written by Vladimir Vyskocil and Eugene Crosser

Example

Finally, if you want to transmit some data with the normal protocol (except special initialisation

cases), you should send or receive one of the following sequence:
 Packet type Packet subtype Length of data data Checksum
Offset 0 1 2 4 4+data
Length 1 1 2 LSB variable 2 LSB
Send 0x1b 0x43 length of data Code+Reg/subcode+opt Σdata
Receive 0x02 Seq# length of data Data Σdata
 0x03 Seq# length of data Data Σdata

Example :

Send a command (read resolution)

commande[0]=0x1b;
commande[1]=0x43;
commande[2]=0x04;//Length LSB
commande[3]=0x00;//Length MSB
commande[4]=0x01;//Get Int32
commande[5]=0x01;//Res offset
commande[6]=0x00;//0
commande[7]=0x00;
commande[8]=0x02;//Checksum LSB
commande[9]=0x00;//Checksum MSB
SrmReceiveFlush(SerialId,0);
SrmSend (SerialId, &commande,10, &err);

Receive data (read resolution)

SrmReceive (SerialId, &commande,1, timeout, &err);
if ((err==0)&&(commande[0]==0x03))//DATA in one seq
{
 SrmReceive (SerialId, &commande,1, timeout, &err);
 if ((err==0)&&(commande[0]==0x00))//Seq #0

{
 SrmReceive (SerialId, &commande,2, timeout, &err);

 if ((err==0))//Data length
 {
 UInt16 size=commande[0]+256*commande[1];
 SrmReceive (SerialId, &commande,size, timeout, &err);
 if (!err)
 {
 Char tmp[10];
 StrPrintF(tmp,"%x%x", 256*commande[3]+commande[2],
 256*commande[1]+commande[0]);
 FrmCustomAlert(AlertAlert,"Resolution : ",tmp, " ");
 commande[0]=0x06;
 SrmSend (SerialId, &commande,1, &err);
 }
 }
 }
}
else FrmCustomAlert(AlertAlert,"error"," ", " ");

